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Abstract: It is now understood that genes and their various mutations are associated with the
onset and progression of diseases. However, routine genetic testing techniques are limited by their
high cost, time consumption, susceptibility to contamination, complex operation, and data analysis
difficulties, rendering them unsuitable for genotype screening in many cases. Therefore, there is
an urgent need to develop a rapid, sensitive, user-friendly, and cost-effective method for genotype
screening and analysis. In this study, we propose and investigate a Raman spectroscopic method
for achieving fast and label-free genotype screening. The method was validated using spontaneous
Raman measurements of wild-type Cryptococcus neoformans and its six mutants. An accurate
identification of different genotypes was achieved by employing a one-dimensional convolutional
neural network (1D-CNN), and significant correlations between metabolic changes and genotypic
variations were revealed. Genotype-specific regions of interest were also localized and visualized
using a gradient-weighted class activation mapping (Grad-CAM)-based spectral interpretable
analysis method. Furthermore, the contribution of each metabolite to the final genotypic decision-
making was quantified. The proposed Raman spectroscopic method demonstrated huge potential
for fast and label-free genotype screening and analysis of conditioned pathogens.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Genes, the fundamental hereditary units, encompass DNA or RNA sequences carrying vital
genetic information that offspring can inherit. The expression of genetic information governs
the phenotypic variability observed in each individual [1]. Genes and their various mutations
have shown substantial associations with the initiation and progression of diseases, including
cancer [2,3], diabetes [4], and heart diseases [5]. They serve as important indicators for disease
prevention [6], early diagnosis [7], and precision treatment [8,9] in clinical settings. Consequently,
genotype screening and analysis have played a significant role in enhancing diagnostic accuracy,
therapeutic efficiency, and the prediction of treatment response in personalized medicine.

Nowadays, conventional genotype screening and analysis methods mainly include DNA
sequencing, polymerase chain reaction (PCR), and fluorescence in situ hybridization (FISH).
However, these methods suffer from limitations such as high cost, time consumption, susceptibility
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to contamination, and complex operation, which hinder their routine use as regular examinations
for all patients. DNA sequencing allows the examination of the sequence of four bases (adenine,
guanine, cytosine, and thymine) in a specific DNA fragment or even the entire DNA sequence,
offering high accuracy. Nevertheless, its cost, time consumption, and complexity restrict
its clinical applications [10]. PCR is a widely used molecular biology technique for DNA
amplification using enzymatic replication [11,12]. It provides high sensitivity and specificity by
selectively amplifying a “target” DNA sequence through primer-mediated enzymatic amplification.
However, the amplification process is complex and prone to contamination. FISH is a powerful
technique that utilizes fluorescent probes to bind to specific parts of chromosomes with a high
degree of sequence complementarity [13]. FISH tests are sensitive and offer hybridization
specificity, but they are primarily designed to detect the presence or absence of specific genes and
require complex labeling procedures [14]. Therefore, there is an urgent need to develop a rapid,
sensitive, and label-free genotype screening method suitable for widespread clinical application.

The integrated study of data from radiographical and genomic scales is known as radiogenomics,
which aims to explore the relationship between phenotypic features and genomic alterations
[15,16]. However, it has been established that metabolic changes caused by diseases often occur
earlier than changes in phenotypic features [17,18]. Therefore, metabolic changes are expected to
be closely associated with genotypic variations. Raman spectroscopy, a rapid, sensitive, and label-
free technique, can capture metabolic changes by measuring the inelastic scattering of photons
from vibrating molecules [19–21]. Inspired by the concept of radiogenomics, we propose a fast,
non-invasive, and label-free spectromics method based on Raman spectroscopy. This method
investigates the relationship between molecular metabolic features and genomic alterations, as
illustrated in Fig. 1. By leveraging big data analysis methods similar to radiogenomics, the
Raman spectromics method is expected to establish a more direct and comprehensive association
between metabolic changes and genotypic variations for genotype screening.

Fig. 1. The schematic of radiogenomics and the proposed spectromics method, in which
radiogenomics aims to explore the relationship between phenotypic features and genotypic
variations while spectromics aims to create a link between metabolic changes and genotypic
variations.

This paper makes the following specific contributions: 1. This study introduces the novel
concept of Raman spectromics to examine the correlation between metabolic changes and
genotypic variations using a spectroscopic approach. 2. The proposed Raman spectromics
method employs a deep learning approach to accurately differentiate between seven strains
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of Cryptococcus neoformans (C. neoformans), providing an alternative method for fast and
label-free genotype screening. 3. Using gradient-weighted class activation mapping (Grad-
CAM), a hitherto undocumented objective and intelligent spectral interpretable analysis method
is introduced to localize genotype-specific regions of interest. Additionally, the contribution of
each corresponding metabolite to the final genotypic decision-making is quantified.

2. Materials and methods

The overall framework of the proposed Raman spectromics method is shown in Fig. 2. In this
study, the spontaneous Raman spectra were first collected from seven strains of C. neoformans;
then, a deep learning method was used to classify those spontaneous Raman spectra into different
genotypic strains; finally, the contribution of each metabolic change was automatically quantified
by interpreting the trained neural network with a newly developed spectral interpretable analysis
method.

Fig. 2. The overall framework of the proposed Raman spectromics method: ①. Spontaneous
Raman data acquisition; ②. Genotypic identification; ③. Contribution quantification.

2.1. Sample preparation and Raman measurements

The flowchart of the sample preparation and Raman measurements is illustrated in Fig. S1 in
the Supporting Information. Fungal samples of a wild-type C. neoformans strain H99 and six
HDAC (histone deacetylase) mutants were cultured in Yeast Extract Peptone Dextrose (YPD)
medium. These six HDAC mutants were produced using H99 strain and biolistic transformation,
as previously reported [22,23]. According to the closest relative in the phylogenetic tree of
deacetylase genes encoding HDACs, the HDAC mutants of C. neoformans in this study can
mainly be categorized into two classes: class I consisting of dac2∆ (Gene ID: CNAG_05563),
dac5∆ (Gene ID: CNAG_05096), dac6∆ (Gene ID: CNAG_05276) and dac8∆ (Gene ID:
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CNAG_01699) mutants; class II consisting of dac3∆ (Gene ID: CNAG_00660) and dac4∆ (Gene
ID: CNAG_01563) mutants. After overnight cultivation, the fungal samples were diluted in fresh
YPD medium and then incubated at 37 °C for 6 h. The mixture was subsequently rinsed and
centrifugated 4 times in phosphate-buffered saline (PBS) to remove the culture medium and
resuspended in 100 µL PBS solution. Before collecting Raman measurements, a 1 µL suspended
fungal sample was dropped into a small well on an aluminum substrate and covered by a quartz
coverslip to avoid evaporation.

150 spontaneous Raman spectra were collected from each strain of fungal samples. Thus,
1050 spontaneous Raman spectra were measured from those seven different strains by a confocal
Raman microscope (Horiba JY HR Evolution, France). A 785-nm diode laser (about 19.2 mW
on the sample) was used as excitation. A laser spot of approximately 1µm was formed by an
objective lens (100 x, NA= 0.90, Olympus), which was capable of exciting only a single fungal
cell at a time. The measured wavenumber range was from 200 cm−1 to 1800cm−1 with a spectral
resolution of 1 cm−1. The exposure time was 20 s, and each Raman spectrum was accumulated
for 10 times.

2.2. Data preprocessing

For each Raman spectrum, the fluorescence background was estimated by fifth-order polynomial
fitting and subsequently subtracted from the original spectrum; then, the Savitzky-Golay algorithm
was used to remove the noise [21,24]; finally, normalization was implemented to alleviate the
variance in Raman measurements due to manual operations, in which the intensity at each
wavenumber was divided by the max intensity of this Raman spectrum. After the above
operations, those preprocessed Raman spectra served as the inputs for further processing and
analysis.

2.3. Genotype screening based on a 1D-CNN model

A 1D-CNN model based on AlexNet architecture [25] was trained to identify fungal samples with
different genotypes. The proposed 1D-CNN model consisted of an input layer, four convolutional
layers, a flatten layer, three fully-connected layers, and an output layer. The architecture of the
1D-CNN model and its detailed configurations can be found in Fig. 3(a). The preprocessed
Raman spectra with each dimension of 2318× 1 served as the inputs of the proposed 1D-CNN
model. A total of four convolutional layers with different kernel sizes (K), number of filters (F),
and strides (S) were employed to extract spectral features. Each convolutional layer was followed
by one activation layer and one pooling layer. In the activation layer, a nonlinear activation
function ReLU was used to speed up the forward propagation for faster learning and better
performance during the training of deep networks [26]. The output of ReLU was the same as
the input or zero if the input was positive or non-positive, respectively. In the pooling layer, the
max-pooling process was conducted by applying a max filter to non-overlapping subregions of the
extracted spectral features. Accordingly, the sizes of those spectral features can be significantly
compressed to save computation during the training of deep networks. Those spectral features
were further converted into one-dimensional feature vectors by a flatten layer and finally output
the predicted genotype after passing through three fully-connected layers. The dropout technique
was employed to randomly ignore neurons in the first fully-connected layer with a 50% probability
to prevent over-fitting. The proposed 1D-CNN model was coded and run under Python 3.8 with
PyTorch 1.11.0.

To carry out an unbiased evaluation, 5-fold cross-validation was employed to train the proposed
1D-CNN model and to validate its performance. The Raman spectra collected from different
fungal samples were randomly split into 5 sets with 210 Raman spectra in each set, i.e., 30
Raman spectra randomly chosen from each strain; one set was served as the test data set, and the
remaining four sets were further split into training data set and validation data set. Due to the
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Fig. 3. (a) Architecture of the 1D-CNN model, consisting of an input layer, four convolutional
layers, a flatten layer, three fully-connected layers and an output layer. The numbers below
each convolutional layer indicate the dimension of the output for this convolutional layer,
and the numbers below each fully-connected layer indicate the number of neurons in this
fully-connected layer. Conv represents convolutional layer and FC represents fully-connected
layer; (b)The schematic of the proposed spectral interpretable analysis method for quantifying
the contribution of each metabolic change on final genotypic decision-making. The input
Raman spectrum first forward propagated through the trained 1D-CNN model to obtain the
final predicted genotype, and then backpropagated to derive the weight of each feature vector;
then, the weighted summation of those feature vectors was activated by ReLU to achieve the
coarse Grad-CAM localization, in the form of a heatmap along the wavenumber dimension;
finally, the contribution of each metabolic change to the final genotypic decision-making
is calculated by the division between brightness of corresponding Raman peak and overall
brightness of all prominent Raman peaks.

relatively small sample size, data augmentation was applied to training and validation data sets to
avoid over-fitting. The sample size was enlarged 10 times by adding white Gaussian noise to the
original Raman signal with random noise intensity levels ranging from 0 to 20 dBw. During the
training process, considering the compromise between training speed and convergence accuracy,
both the training and validation data sets were divided into batches with a batch size of 128.
After training, validation, and testing, the performance of the proposed 1D-CNN model was
evaluated by the following criteria, including training loss and validation accuracy versus epochs,
confusion matrix, and classification accuracy. The training loss indicates the difference between
the predicted values of the model and the actual values during the training process, which can be
used to adjust model parameters to achieve optimal performance. Validation accuracy refers to
the agreement between the predicted results of the model and the actual results. The confusion
matrix represents the prediction summary in a matrix form, which shows the number of correct
and incorrect predictions in each class. The above procedure was repeated until all 5 sets had
been tested once to evaluate the overall performance.
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2.4. Grad-CAM based spectral interpretable analysis

This study proposed an intelligent and quantitative spectral interpretable analysis method based
on Grad-CAM [27]. This spectral interpretable analysis method could objectively localize the
genotype-specific Raman peaks of interest and quantify the contributions of corresponding
metabolic changes to the final genotypic decision-making, as demonstrated in Fig. 3(b). More
specifically, the input Raman spectrum first forward propagated through the trained 1D-CNN
model to obtain the final predicted genotype, and the corresponding gradient vectors generated
by the backpropagation of this prediction were global-average-pooled to obtain the weight
of each feature vector; then, the weighted summation of those feature vectors was activated
by ReLU to achieve the coarse Grad-CAM localization, in the form of a heatmap along the
wavenumber dimension, in which the brightness represented the contribution on final genotypic
decision-making. Finally, the relative contribution of each metabolic change to the final genotypic
decision-making, i.e., Ci was quantified by Eq. (1).

Ci = Si/(S1 + S2 + . . . + Sn) (1)

where n is the total number of all prominent Raman peaks, and Si is the area under full width at
half maximum intensity of the i-th prominent Raman peak.

Fig. 4. The training and validation performance versus the epoch number of the proposed
1D-CNN model based on 5-fold cross-validation: (a) training loss, and (b) validation
accuracy; The genotype screening performance of the proposed 1D-CNN model on test data
set: (c) confusion matrix, and (d) ROC curves.
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3. Results

3.1. Genotype screening

The training and validation performances of the proposed 1D-CNN model are depicted in Fig. 4(a)
and Fig. 4(b), respectively. The training loss exhibited an initial rapid decrease, followed by a
steady decrease until it reached a stable value close to 0, with slight variations. Furthermore,
the validation accuracy of the trained 1D-CNN model initially showed a steep increase and
then stabilized at around 80% with minor fluctuations. These findings suggest that the trained
1D-CNN model achieved fast convergence without overfitting.

From the confusion matrix in Fig. 4(c), it can be found that most genotypes of C. neoformans
could be correctly identified. The overall classification accuracy for genotype screening,
determined through 5-fold cross-validation, was 80.2%. The 1D-CNN model achieved the
highest accuracy of 96% when identifying the dac8∆ strain and the lowest accuracy of 63% when
identifying the dac3∆ strain. These results align with the performances of the 1D-CNN model,
as indicated by the ROC curves and AUC values plotted in Fig. 4(d). These findings demonstrate

Fig. 5. (a) Comparison of the mean Raman spectra of C. neoformans with different
genotypes, and (b) the heatmaps, in which the brightness represents the contribution of
different Raman peaks to the final genotypic decision-making.
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Table 1. The contributions of different metabolic changes to the final genotypic decision-makings
for C. neoformans with different genotypes

Raman
peaks
(cm−1)

Major
assignments

Genotypes

H99 dac2∆ dac3∆ dac4∆ dac5∆ dac6∆ dac8∆

251 Chitin 2.3% 1.5% 1.8% 1.5% 1.6% 1.3% 1.2%

434 D-(+)-trehalose 13.8% 6.3% 3.7% 6.0% 5.2% 5.0% 3.7%

541 α-D-glucose,
β-D-glucose

29.6% 12.1% 7.4% 19.6% 24.6% 17.6% 8.9%

643 Glutathione 2.1% 1.4% 1.7% 3.4% 2.7% 2.6% 1.2%

723 Adenine,
coenzyme A

1.4% 1.7% 3.1% 3.4% 1.0% 1.8% 3.1%

755 L-tryptophan 1.8% 2.1% 4.1% 3.7% 1.0% 1.5% 5.1%

876 L-glutamate 9.3% 9.9% 10.3% 4.7% 8.6% 3.8% 10.6%
942 L-glutamate,

trilinolein,
trilinolenin

5.0% 10.1% 8.7% 12.0% 11.6% 8.6% 6.0%

1001 Phenylalanine 0.5% 1.7% 1.7% 1.9% 1.1% 1.4% 1.1%

1082 Amylopectin,
amylose

4.4% 13.0% 13.8% 11.3% 4.8% 7.3% 10.9%

1128 α-D-glucose,
β-D-glucose,

D-(+)-trehalose,
myristic acid

11.3% 7.8% 7.0% 8.9% 6.3% 7.0% 5.7%

1261 D-(+)-trehalose,
amide III,
trilinolein,
trilinolenin

3.6% 6.1% 11.3% 8.8% 5.7% 11.3% 6.5%

1341 L-glutamate 4.2% 7.4% 7.7% 3.7% 5.6% 9.4% 11.1%
1362 Lipids,

saccharides
4.1% 6.1% 7.9% 3.8% 9.3% 9.3% 12.5%

1455 D-(+)-trehalose,
lipids

3.2% 3.8% 7.1% 4.4% 7.6% 7.8% 8.6%

1656 Triolein,
trilinolenin,

amide I

3.5% 9.1% 2.9% 3.1% 3.4% 4.4% 4.0%

that the combination of spontaneous Raman spectroscopy and deep learning methods enables
label-free genotype screening and yields good classification accuracy.

3.2. Genotype spectral interpretable analysis

After preprocessing, the Raman spectra from each genotype of C. neoformans are averaged and
presented in Fig. 5(a). Upon visual inspection of these mean Raman spectra, consistent and
prominent Raman peaks are observed at wavenumbers 251, 434, 541, 643, 723, 755, 876, 942,
1001, 1082, 1128, 1261, 1341, 1362, 1455 and 1656 cm−1. The assignment of these Raman
peaks to specific vibrational modes and biomolecules was tentatively done based on existing
literature [28–31]. The assigned vibrational modes and corresponding biomolecules are listed in
Table S1 in the Supporting Information.

By employing spectral interpretable analysis, the contribution of each metabolic change to the
final genotypic decision-making was analyzed and visualized as a heatmap, as shown in Fig. 5(b).
The horizontal dimension of the heatmap represents different wavenumbers (i.e., corresponding
to different metabolic changes associated with Raman peaks), while the vertical dimension
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Fig. 6. The Raman intensities of peaks with relative contribution larger than 10% among
different genotypes.

represents different fungi samples grouped by genotype. Notably, the heatmap fof each genotype
exhibited a strap-like distribution, indicating that the major contributions to the genotypic
decision-making originated from consistent metabolic changes within each genotype. However,
the metabolic changes with larger contributions varied across different genotypes. Moreover,
the relative contribution of each metabolic change was quantified by dividing its individual
contribution by the overall contribution from all metabolic changes. The quantified relative
contributions are listed in Table 1. Additionally, for Raman peaks with relative contributions
exceeding 10%, the Raman intensities across different genotypes are plotted in Fig. 6 to further
illustrate the variations.

4. Discussion

It is well-established that genes and their various mutants play a crucial role in the genesis
and development of diseases. The field of radiogenomics focuses on the integrated analysis of
data from radiographical and genomic scales to investigate the relationship between phenotypic
features and genomic alterations. However, it has been shown that metabolic alterations associated
with diseases often occur earlier than changes in phenotypic features. Therefore, it is highly
conceivable that metabolic changes are more closely linked to genotypic variations. Based on
the principles of radiogenomics, we propose a fast, non-invasive, label-free, and cost-effective
spectromics method based on Raman spectroscopy to explore the connection between molecular
metabolic features and genomic alterations. To validate the effectiveness of this proposed method,
we conduct experiments using wild-type C. neoformans and its six mutants.
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The generation of the six HDAC mutants of C. neoformans involved using the H99 strain
and biolistic transformation. Histone lysine acetylation/deacetylation is a well-studied histone
post-translational modification critical in regulating various cellular processes. It influences
chromatin-templated processes and controls metabolic status, cytoskeleton dynamics, apoptosis,
protein folding, and cellular signaling in the cytoplasm [32]. This modification is dynamically
regulated by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases
(HDACs). Several studies have demonstrated that the disruption of the HATs/HDACs balance,
resulting from the knockout of specific HDAC genes in fungi, can lead to abnormal gene
expression and subsequent changes in fungal phenotypes, growth, metabolism, and virulence
[22,23,33]. The HDAC genes in C. neoformans have been classified into two classes based on
their closest relatives in S. cerevisiae or S. pombe: Class I mutants include dac2∆, dac5∆, dac6∆,
and dac8∆, while Class II mutants consist of dac3∆ and dac4∆ [33]. To compare the biomolecular
changes between the two classes of mutants and the wild-type H99 strain, the prominent Raman
peaks observed in the Raman spectra were assigned to corresponding biomolecules based on
Table S1 in the Supporting Information. By analyzing these biomolecular changes, we gained
further insights into the metabolic alterations associated with each class of mutants compared to
the wild-type strain H99.

In the class I mutants dac2∆ and dac5∆, compared to the H99 strain, there was a significant
increase in Raman intensity at 942 cm−1, corresponding to L-glutamate. This suggests an elevated
level of amino acids in the fungal cells after the deletion of these two histone deacetylase genes.
Studies have shown that the deletion of the DAC2 gene is associated with the upregulation of genes
related to protein biosynthesis, indicating its involvement in regulating protein metabolism [34].
Transcriptome analysis also revealed increased glutamine levels upon DAC2 gene deletion [22].
The increased glutamine is likely converted into L-glutamate by enzymes such as glutaminase,
phosphoribosyl pyrophosphate amidotransferase (PPAT), and glutamine-fructose-6-phosphate
transaminase [35]. Additionally, it was found that ATPase activity is inhibited after DAC5
gene deletion [36]. ATPase is involved in various metabolic processes, including protein and
lipid metabolism, and its inhibition may contribute to increased amino acid levels. Moreover,
the Raman intensities at 1082 cm−1 and 1128 cm−1 in dac2∆ and dac5∆ mutants were lower
than those in the H99 strain, tentatively indicating changes in saccharides, consistent with the
observed capsule defects in dac2 ∆ and dac5∆ mutants, associated with impaired polysaccharide
synthases and decreased expression of other cell wall synthesis-related enzymes [34], leading to
a reduction in various polysaccharide components of the fungal cell wall and capsule. In contrast,
significant changes in other biomolecules were observed in the dac6∆ and dac8∆ mutants. The
Raman intensities at 434 cm−1, 541 cm−1, 876 cm−1, and 942 cm−1 in these mutants were lower
than those in the H99 strain and were tentatively assigned to D-(+)-trehalose, α-D-glucose,
β-D-glucose, L-glutamate, trilinolein, and trilinolenin. Phylogenetic analysis indicated that Dac6
and Dac8 deacetylases share protein sequence similarities with mammalian histone deacetylases
(HDACs) Hdac1 and Hdac2, as well as Rpd3 in S. cerevisiae [22,23]. Depletion of Hdac1 has
been associated with increased AMP (adenosine 5’-monophosphate) [37]. Interestingly, AMP
and ATP can be interconverted to maintain energy balance, and the AMP/ATP ratio is sensed by
AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis. Increased
AMP levels allosterically activate AMPK, promoting ATP-generating metabolic reactions in
various pathways [37]. Thus, the decreased saccharides, lipids, and amino acids observed
in dac6∆ and dac8∆ mutants can be attributed to their massive consumption in metabolism
processes such as the tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.
HDAC Rpd3 has also been found to play a crucial role in controlling proliferation, development,
and metabolism [38]. In addition, the Rpd3 knockout mutant displays constitutive de-repression
of phosphonic acid phosphatase, a key enzyme involved in regulating phospholipid metabolism
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and signal transduction by catalyzing the formation of diacylglycerol from phosphonic acid [39],
which suggests suppression of lipid levels in dac6∆ and dac8∆ mutants.

In the class II mutants dac3∆ and dac4∆, compared to the H99 strain, there was a significant in-
crease in Raman intensity at 942 cm−1, corresponding to L-glutamate, trilinolein, and trilinolenin.
This indicates a decrease in the levels of amino acids and lipids in fungal cells after deleting
the DAC3 or DAC4 gene. According to the phylogenetic tree analysis of HDAC genes [22,23],
HDAC Dac3 shares 35% to 49% homology with Rpd3, while HDAC Dac4 is a homolog of
Hda1. These homologous proteins have similar structures, functions, and amino acid sequences.
Studies have shown that the deletion of Rpd3 and Hda1 promotes in vivo acetylation at various
lysine residues in core histones H3 and H4 [40]. Acetylation of highly conserved lysine residues
can disrupt more than half of the glycolytic and tricarboxylic acid (TCA) cycle enzymes [41],
which may ultimately lead to abnormal amino acid and lipid metabolism. Additionally, Dac4 has
been found to regulate a list of histones and other proteins involved in protein synthesis (such as
Tef1, mitochondrial nucleoid protein Mnp1, and eukaryotic translation release factor Sup35) [22],
which could be another possible mechanism contributing to the decreased amino acid levels in
dac3∆ and dac4∆ mutants. Furthermore, compared to the H99 strain, dac3∆ and dac4∆ mutants
exhibited lower Raman intensity at 1261 cm−1, corresponding to D-(+)-trehalose. This decrease
in D-(+)-trehalose levels in dac3∆ and dac4∆ mutants might be attributed to abnormal glucose
metabolism, which the high acetylation levels of lysine residues might also disrupt.

Indeed, the accurate identification of seven different genotypes poses a challenging and
complex multi-classification task. While spectral analysis can effectively identify biomolecular
differences among groups, it may not be sufficient to solve such a complex classification problem
independently. In recent years, deep learning algorithms, such as 1D-CNN, have shown great
potential in automated feature extraction and uncovering intricate patterns in high-dimensional
data like Raman spectra. By leveraging the power of deep learning, genotype screening among
wild-type C. neoformans and its mutants can be achieved with high identification accuracy.
Furthermore, while estimating the contribution of each biomolecule based on their differences
can provide insights, it may not fully capture the significance of these biomolecular changes
in the context of classification decision-making. To address this, a Grad-CAM-based method
can be employed, which offers a more objective approach to localize genotype-specific Raman
peaks of interest for final classification decision-making. This approach allows for more precise
and accurate quantification of the contributions of corresponding biomolecular changes to the
genotypic decision-making process.

Over the years, gene sequencing, mass spectrometry, and DNA chips have been applied for
genotype screening. PCR gene sequencing using specific DNA fragments has demonstrated high
sensitivity and specificity in identifying the genotype of C. neoformans [42]. However, this method
is time-consuming and prone to contamination [43]. Matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) can classify cryptococci and accurately
determine genetic and evolutionary relationships within and between species [44]. Current
evidence suggests that MALDI-TOF MS offers higher accuracy and faster results than gene
sequencing. However, the cost of the mass spectrometer and its consumables is high, and the
outcomes heavily depend on the experience of the technical operator. DNA chips, which are
miniaturized microsystems utilizing the specific and reversible binding ability of DNA, have
been widely used in mutation detection and identification [45]. Nevertheless, DNA chips are
expensive and challenging for routine clinical genotype screening. In contrast, the proposed
spectromics method, although validated only on wild-type C. neoformans and its six mutations,
offers a rapid, sensitive, label-free, and cost-effective approach for genotype screening. Future
studies can expand this method to other strains of fungi or bacteria and clinical samples to further
demonstrate its broad compatibility and genotype screening capabilities.
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5. Conclusions

This study proposed a Raman spectromics method for rapid and label-free genotype screening.
The method was assessed using seven C. neoformans strains, and a high overall classification
accuracy of 80.2% was achieved using a trained 1D-CNN model. A newly developed Grad-CAM-
based spectral interpretable analysis method was employed to objectively and intelligently localize
genotype-specific Raman peaks of interest. This analysis method also facilitated quantifying the
contributions of different metabolic changes to the final genotypic decision-making process. The
results suggest significant correlations between phenotype, enzymatic activities, and metabolic
processes with genotypic variations in C. neoformans. The fast and label-free Raman spectromics
method demonstrates the promising potential for genotype screening and analysis of pathogenic
organisms.
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